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Abstract. We address the problem of the prediction of
residue spatial proximity in a protein, through the
automatic processing of a 3D "N NOESY-HSQC. The
spatial distance between residues is estimated from a
spectral match value calculated using a comparison of
the resonances involving the amide hydrogens. The
method is shown to provide a good estimation of a large
number of residue spatial proximities, in the case of two
experimental 3D spectra, recorded on proteins of o and
p secondary structures. It is tested on simulated data sets
against the protein size, secondary structure and the
quality of the signal. More than 70% of the sequential
assignment is correctly predicted, and the prediction is
better for the o than for the f§ secondary structure. The
medium- and long-range correlations seem equally well
predicted for all the secondary structures. The efficiency
of the method is compared to a previously proposed
spectral correlation approach.

Key words: Nuclear magnetic resonance — Structure
prediction — Computer-aided assignment — Data
processing

1 Introduction

Methods permitting rapid insight into geometric prop-
erties of proteins given the simple observation of their
NMR spectrum are certainly very interesting and
valuable tools. They are of particular interest in the
frame of structural genomics studies as they could
permit a rapid determination of the global fold and
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could eventually permit rapid protein structure determi-
nation in an unattended manner.

Methods have been proposed to get hints on the
secondary structure from the observation of mere
chemical shifts [1], but the determination of the global
fold and of the tertiary structure has not been addressed
yet. It is usually considered that this cannot be done with
at least a partial assignment of the spectrum in order to
relate to the peptide backbone the connectivities which
are observed in the nOe spectra [2].

In the case of a double-labeled sample, methods for
automatic determination of spin system and sequential
assignments [3, 4, 5] have been proposed. However, in
other cases, assignment is still very dependent on manual
spectral analysis, thus presenting a major bottleneck for
the use of NMR in structural genomics.

For a '’N single-labeled protein, a possible way to-
wards gaining information on protein geometry is by
direct analysis of the 3D N nuclear Overhauser en-
hancement spectroscopy (NOESY)-heteronuclear single
quantum coherence (HSQC) experiment, which displays
spatial proximity information while usually presenting
little spectral superposition for the amide protons. The
spectral correlation method [6] was a first attempt in
that direction; here we explore this approach more
extensively.

The protocol proposed here to process 3D "N NO-
ESY-HSQC is made up of the following steps. For each
protein residue observed on the 2D HSQC, the sub-
spectrum containing the nOe correlation peaks involving
the residue amide hydrogen is extracted from the 3D
experiment. All pairs of subspectra are then compared
two by two on the basis of the detected peaks; values
are built from this comparison (called match values in
the following) and stored in a match matrix. This
match matrix shows strong resemblance with the contact
matrix of the protein as the subspectrum pairs corre-
sponding to residues close in space usually exhibit sev-
eral peaks located at the same 'H chemical shift and
consequently produce large match values. This protocol
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has been called FIRE standing for Fold Insight by
nuclear ResonancE. It is evaluated here by running it on
experimental as well as on simulated 3D "N NOESY-
HSQC spectra obtained from a range of proteins pre-
senting different sizes and topologies.

2 Systems and methods

Experimental data sets were recorded on P8MTCPIL  apd
P13MTCPIL " two proteins of 68 and 107 amino acids respectively,
and encoded by the MTCPI1 oncogene [7]. The pl3 polypeptide
used for the NMR study contained 117 residues because of the
clone construct [8]. The p8 main structural motif [9] consists of
two antiparallel helices spanning residues 8-20 (al) and 29-40
(alI), strapped in an o- hairpin motif by the two disulfide bridges
7-38 and 17-28. The third helix (aIII), spanning residues 48-63, is
connected to the double-helix motif by a loop from residue 41-46,
and a third disulfide bridge 39-50 links the top of helix olII to
the tip of helix alIl. The 3D structure of p13 shows two roughly
symmetrical motifs. Each motif is made of four-stranded anti-
parallel f sheets, containing two short strands and two long
strands. The two f§ sheet motifs are connected by a large loop,
which appears less defined, probably owing to increased flexibility.
These two motifs wrap on an orthogonal f-barrel, forming the
core of the protein. They delimit a cavity which is completely
filled by the sidechains of hydrophobic residues on the f§ sheets.
In each motif, the two longer strands form a larger two-stranded
f sheet.

The 2D HSQC and 3D NOESY-HSQC spectra were recorded
using an AMX600 Bruker spectrometer, using previously described
acquisition parameters [10]. Processing and handling of assignment
data were realized with the Gifa assignment module [11, 12].

Simulated data sets were also calculated for six proteins (Table
1), using Protein Data Bank (PDB) [13] and Bio Mag Res Bank
assignment files [14]. Intensities were calculated using the program
SPIRIT [15], which takes into account the efficiency of INEPT
magnetization transfer and incomplete recovery of z magnetization
between scans. A relaxation delay of 1.25 s, a first INEPT duration
of 3.66 ms, a reverse INEPT duration of 1.83 ms, a model of iso-
tropic rigid motion with a global correlation time of 4 ns, and a
mixing time of 200 ms were used for all simulations. The spectra
were calculated from simulated intensities larger than 0.002, as the
sum of Lorentzian functions of frequencies corresponding to pro-
ton chemical shifts, and with linewidths of 25 or 35 Hz. It was
supposed here that there are no peak superpositions in 2D HSQC
(see Sect. 3.2), and only the proton chemical shifts were used to
simulate the 3D spectrum. In order to check the reliability of the
simulation, the data set simulated for protein p8 was compared to
the experimental spectrum, and both gave rise to the same order of
match values (data not shown).

The amount of noise, o, in the experimental and simulated data
sets was estimated as the standard deviation of the data points in an
empty spectral zone; this noise was computed in each spectral

Table 1. Features of the proteins studied

column, in order to take into account the noise variation from one
column to another.

The commands involved in the FIRE protocol were imple-
mented in Gifa, using the Gifa macro language [11] and Fortran 77.

3 Algorithms

3.1 Estimation of the fold information contained
ina 3D NOESY-HSQC experiment

For this study, it is a central question to know whether
a 3D NOESY-HSQC experiment contains a sufficient
amount of information to define or hint at the protein
fold. Many protons of the protein are simply absent
from this spectrum and have little or no impact on the
final result. The distance information extracted from the
measured signal is filtered through the amide hydrogens
and thus reflects only very indirectly the 3D Euclidean
distance between atoms.

To estimate how the distance information is coded in
the 3D experiment, between all the non-proline residues,
i and j, we used the parameter A;;, which is equal to the
minimum distance between an amide hydrogen and the
hydrogens of the other residue:

Aij = MinHi‘Hj[d(HNia Hj)vd(Hva Hz)] ) (1)

where H;, H; are the hydrogens and HN;, HN; the amide
hydrogens of residues i and j; d is the 3D Euclidean
distance; Miny, g, is the minimum value on the overall

set of hydrogens from residues i and j. The exchangeable
hydrogens, aromatic hydrogens and He hydrogens from
lysines are excluded from the calculation. A verifies the
distance properties [16], and is related to the maximum
distance information which can be extracted from an
isolated 3D NOESY-HSQC.

The A distance and the 3D Euclidean distance be-
tween amide hydrogens are compared for proteins p8
and pl3 (Fig. 1) by displaying their inverse (called
proximities in the following). The 3D Euclidean prox-
imity barely shows the long-range contacts of the
structures and many sequential proximities are missing.
On the other hand, the proximity calculated from A
defines the sequential proximities and the protein fold;
there are no more missing sequential proximities in p§
and pl3, apart from at the proline positions. Further-
more, the a-hairpin motif of p8 and the f barrel of p13
appear to be well defined by the A proximity.

Identification® Name Number Reference  Protein Data  Bio Mag Res  Kind of Secondary
of residues Bank entry Bank entry data set structures

acyt Apocytochrome b562 106 24 liet 1672 Simulated o

ayj Antifungal protein 51 18 layj - Simulated o/f

kum Glucoamylase 108 25 lkum 4011 Simulated o/f

ner Ner DNA-binding protein 72 26 Iner 287 Simulated o

snob Staphylococcal nuclease 103 27 2sob 4010 Simulated o/f

srl Src SH3 domain 64 28 Isrl 3433 Simulated o/f

p8 PSMTCPI ghcogenic protein 68 9 2hp8 - Experimental o

pl3 P13MTCPI oncogenic protein 117 8 Iqtu - Experimental f8

#The identification defined for each protein is used to refer to it in the text
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Fig. 1. Comparison of the proximity matrices obtained for p8 (a, b)
and pl3 (¢, d) using the Euclidean distance between amide
hydrogens (a, ¢) and the distance A (see text) between residues (b,
d). The proximity is equal to the inverse of distance for nonzero
distances and is 1 for zero distances. Only proximities correspond-
ing to distances smaller than 4 A are shown. The x- and y-axes
display the residue number

Nevertheless, a closer examination of the p8 A prox-
imities reveals that residue 1 is isolated from the other
residues and that the submatrices containing residues 3—
42 and 44-68 are connected only by long-range proxim-
ities. This is due to prolines 2 and 43, located respectively
in N-terminal and loop regions of the protein, where little
(i,i+2) or (i,i 4+ 3) contact can be found.

In the following, all the results obtained from the
processing of 3D NOESY-HSQC spectra are compared
to spatial proximity information based on the distance
A; only the proximities corresponding to distances
smaller than 4 A are shown in the figures.

3.2 Prediction of the residue spatial proximity

The FIRE protocol consists of extracting the fold
information from the 3D NOESY-HSQC experiment
by estimating the similarity of the NOE columns
extracted from the 3D experiment. The 2D HSQC
spectrum is peak-picked, and a regular strip-plot is
constructed from the 3D NOESY-HSQC experiment by
extracting a subspectrum along the 'H NOE axis from
the 3D experiment. In each subspectrum, a column
located at the maximum of the observed signal is
extracted manually. The columns are then concatenated
to produce a matrix S. A baseline correction is applied
on each column of S to reduce the offset difference
between columns. For the protein residue with index
k, the columns Cj of the matrix S contain the peaks
observed on the 3D NOESY-HSQC, which involve the
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amide hydrogen of this residue. The column size is equal
to the size of the spectral axis in the 3D experiment
bearing the 'H related by NOE (usually F1 or F3). For
the sake of convenience, the columns are ordered here
according to the protein sequence. For simulated data
sets, S is calculated directly from the simulated intensi-
ties and the proton chemical shifts, as described in
Sect. 2. The assumption is made here that for each non-
proline residue, it is possible to extract from the 3D
NOESY-HSQC the set of resonance peaks involving its
amide hydrogen. In the case of p8 and p13, we observed
that even peaks slightly superimposed in the 2D HSQC
gave rise to separable signals in the 3D NOESY-HSQC.

A filtering window is then applied to each column of
S in order to cancel out the spectral intensities located at
the water frequency. As a matter of fact, the water signal
1s observed on almost all the columns and, if not
removed, induces a bias into the result of FIRE. Then a
o value is measured on each column, and all the column
intensities smaller than 5¢ are canceled. Finally, the
columns containing fewer than two peaks and the col-
umns for which the mean intensity is smaller than 0.0005
times the S mean intensity are discarded. The remaining
columns are peak-picked; the central location of each
peak is replaced by 1, and the other locations are set to
zero. The CYf columns obtained are thus formed from
values 0 and 1. For each column pair (C{f, C¥), we cal-

culate a value M;; which quantifies the spectral similarity
(match) between residues i and j:

2 < ey >
ICE e

< | > is the scalar product between the two column
vectors and || || is the column vector norm. If CY and C}f
are both null columns, M;; is set to 0.

M;; takes a value between 0 and 1. Two identical
columns will produce an M;; value of 1, whereas columns
having no peaks facing each other will give an M;; value
of O. M;; does not depend on the order of the columns in
S. A symmetric square matrix, M, the match matrix, is
built from the M;; values. The M matrix is then filtered by
applying a threshold, y, such that for each residue i, the
number of residues j producing a match value M;; larger
than y is in the range 4-4.5. Indeed, in the p8 and p13 A
matrices (Fig. 1), for any residue 7, the mean number of
elements A;; smaller than 4 A is 4.7 (p8) and 4.2 (p13).

(2)

i

4 Results and discussion
4.1 Processing of experimental spectra

Match matrices, M, were calculated as described previ-
ously from the experimental data sets recorded for the
p8 and pl3 proteins (Fig. 2). The results are analyzed
by comparing the observed matches to the A proximity
values described in the previous section. The com-
parison is performed independently for the sequential
(li —j] < 1), medium-range (1 < |i — j| < 3), and long-
range (|i — j| > 3) observed correlations, and values are
reported as percentages of correct correlations.
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Fig. 2. Match matrices calculated on a p8 and b p13. The x- and
y-axes show the residue numbers

Matrix M of p8 (Fig. 2a) is very similar to the cor-
responding proximity matrix (Fig. 1b); 88% of sequen-
tial, 40% of medium-range, and 9% of long-range
correlations are properly predicted. The predicted long-
range correlations are false except for the pair of resi-
dues (14, 32). On the other hand, long-range proximities
observed in the A matrix (Fig. 1b) between residues 5-11
and 47-50 are not predicted at all. Two submatrices
including residues 1-5 and residues 44-47, show no
correlations with other protein residues; they are due to
the break in the correlation graph produced by prolines
6 and 43.

In the case of pl3, only 102 non-zero columns are
kept in the match matrix M (Fig. 2b); apart from eight
proline columns, seven weak intensity columns were set
to zero. The global features of the contact map (66% of
sequential, 43% of medium-range, and 31% of long-
range correlations) are correctly predicted. The predict-
ed long-range correlations permit the determination of
five f strands over the eight of the protein from the
correlations involving residues 30-51 (C and D), 77-89
(G and F), and 86-105 (G and H); however, numerous
false correlations are predicted, and the sequential cor-
relations of residues 29-31 and 60-67 are not predicted.
The 60-67 region is located in an external loop, and the
29-31 region is at the beginning of the f strand C.

A larger percentage of correct sequential prediction is
found for the p8 protein than for pl3. Three different
reasons can be invoked to explain this fact, but it is
difficult to say which one is preponderant. First, the

sequential connections observed in (&) secondary struc-
tures (such as found in p8) are certainly stronger than
the one observed in (ff) secondary structure (the case of
p13). Second, p13 is almost twice as large as p8; the peak
superpositions in the proton spectral width are thus
more important, and the correlation prediction should
be less accurate. Third, the spectral signal-to-noise ratio,
as measured with the ¢ parameter, is better for p8 than
for p13.

4.2 False positive and false negative correlations

The general observation of Figs. 2a and b shows two
drawbacks of the protocol FIRE: the presence of
correlations between residues far away in space (false
positive correlations) and the absence of correlations
between residues close in space (false negative correla-
tions). The false positive correlations come from the fact
that the 'H signals have fortuitous superpositions in the
proton spectrum. These superpositions may then create
positive match values for otherwise unrelated amide
signals. On the other hand, the false negative correla-
tions appear because the presence of false positive
correlations creates a bias when filtering the match
matrix for a given number of neighbors per residue,
through the y parameter. For these reasons, it is of great
relevance to design techniques permitting the detection
of the false positive correlations and eventually to
remove them.

The use of protein assignments at different temper-
atures to decrease the number of false positive corre-
lations was tested. S matrices were simulated on the
Raphanus sativus antifungal protein 1 (Table 1) using its
PDB file and its assignments at 305 K and 316 K [17,
18]. In the corresponding match matrices M, 30 (41)
false positives and 43 (49) false negatives are observed
at 305 (316) K; the sequential prediction percentages
are 74% at 305 K and of 80% at 316 K, respectively.
The matrix obtained from the intersection of the two
matrices contains only ten false positive correlations,
and a comparison of this intersection matrix with the
protein proximity matrix shows that the protein fold
is correctly predicted. However, the number of false
negative correlations (59) increased and the sequential
prediction percentage (72%) is of the same order as the
smallest sequential percentage obtained at the two
temperatures.

The increase in the number of false negatives would
generate a lack of constraints on the fold determination,
but it is preferable to the errors which could be induced
by false positives. Anyway, the use of several tempera-
ture measurements requires the acquisition of several 3D
NOESY-HSQC experiments and for the signals of
the 2D HSQC experiment to be followed during the
temperature shift in order to label each protein residue.

4.3 Robustness of the FIRE algorithm

The computation of match values presented here allows
the prediction of numerous spatial proximities essential
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Identification A (Hz)* Number of  Sequential® Medium® Long® o Number of  Number of % of false
nonzero of (%) (%) (%) neighbors® false positives”  positives'
columns®

acyt 25 100 85 28 15 0.27 4.5 103 19

acyt ) 35 100 81 21 23 0.27 4.1 95 19

ayj-305 K/ 25 47 75 39 49 0.21 43 39 15

ayj-316 K 25 47 81 26 33 0.22 4.3 44 18

ayj-inter* 25 47 7 17 23 - - 10 6

kum 25 98 69 49 38 0.25 4.5 93 17

kum 35 98 63 41 33 0.24 4.3 100 19

ner 25 60 82 33 17 0.26 4.1 53 17

ner 35 60 83 31 0 0.24 4.2 58 19

snob 25 97 65 45 41 0.27 4.4 96 18

snob 35 97 58 43 36 0.27 4.1 97 19

srl 25 54 74 23 47 0.24 44 51 18

srl 35 54 67 29 49 0.23 4.4 54 18

p8 - 65 88 42 9 0.29 4.3 49 14

pl3 - 102 68 43 35 0.27 4.4 110 20

# Linewidth value used to simulate data sets

® Number of nonzero columns in the S matrix

¢ Percentage of sequential correlations predicted
dPercentage of medium-range correlations predicted
Percentage of long-range correlations predicted
"Value of the threshold y

to the determination of the protein fold, but many false
positive correlations are also predicted.

Thus, in order to make use of the match calculation
in the frame of a real-life project, an assessment of the
robustness of the FIRE algorithm as well as an unbiased
criterion to evaluate the quality of the proximity pre-
diction are certainly required.

For this purpose, we computed the outcome of the
FIRE algorithm on a set of spectra simulated for a set of
proteins from Table 1. Several parameters of the simu-
lated data sets (the linewidth, the number of protein
residues, and the protein secondary structures) were
varied in order to test their influence on the result of
FIRE (Table 2). A noise level equivalent to that ob-
served in the spectra of the p§ and pl3 proteins was
added to all the data sets. From these simulations, it can
be observed that the number of false positive correla-
tions increases with the peak linewidth and with the
protein size, regardless of the number of prolines in the
sequence or the number of columns set to zero. The
y values are in the range 0.21-0.29 and exhibit small
variations from one protein to another. Similarly, the
percentage of false positives in the set of predicted match
values is between 14 and 20% in the case of one-tem-
perature processing. These observations prove the wide
applicability of the proposed method, as similar results
are obtained for very different proteins and for different
peak linewidths.

The percentage of sequential correlation correctly
predicted lies between 68 and 88% for the experimental
data sets and between 58 and 85% for the simulated
ones. The comparison of p8 to srl shows that for the
same protein size the sequential proximities are better
predicted for an o fold than for a f one. The obser-
vation of proteins srl, kum and snob, on one hand, and

€ Mean number of neighbors observed in the M matrix

" Number of false positives

'Percentage of false positives in the sets of predicted match values

JProcessing of the ayj protein at one temperature (305 or 316 K)
Intersection of the results obtained on ayj at both temperatures

p8, ner, and acyt, on the other, reveals that for the
same secondary a/ff or o structure, the sequential
prediction percentage does not strongly depend on the
protein size, at least for the size range considered here.
Analysis of the medium-range prediction percentages
indicates two ranges of predictions rates at 20-30% (srl,
ner, acyt) and 40-50% (p8, p13, kum, snob). As the
two protein groups include proteins of different sizes,
as well as o and f secondary structures, it seems that
the medium-range prediction is independent of the
secondary structure and the protein size. The long-
range prediction percentage is in the 10-20% range for
p8, ner, and acyt and is in the 35-50% range for the
other proteins.

4.4 Estimating the reliability of the proximity
prediction by the match value

Additionally, it is of paramount importance to be
able to evaluate the reliability of the proximity
prediction produced by this approach. For this
purpose, we computed the percentage of true predict-
ed proximities according to the match value (Fig. 3),
as obtained for the set of proteins studied. The
percentage variations display similar features, al-
though the size and secondary structures of the
proteins analyzed are different. As the set of proteins
used here is varied, the mean value of these percent-
ages should give a good estimation of the reliability
of an observed match value with respect to possible
proximity between two residues. The continuous line
in Fig. 3 presents the function that is used in the
current implementation of the program to report
reliability to the user.
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Fig. 3. Percentages of the true predicted proximities displayed
according to the match values for proteins p8 (A), pl3 ([J), acyt
(+), kum (x), ner (*), snob (O), and srl (). Percentages were
calculated using regular intervals of width 0.1. The residue pairs
giving rise to a match value in a given interval are selected; on this
subset, the percentage of true predicted proximities is calculated as
the ratio of the number of residue pairs closer than 4 A to the total
number of pairs. The continuous line presents the continuous
function chosen to report match reliability to the user

4.5 Comparison of the FIRE protocol with the
spectral correlation method

The method presented here has common features with
the spectral correlation method proposed by Bartels and
Wiithrich [6]. These authors obtained from a 3D ’N
HSQC-NOESY spectrum between 49 and 63% of
sequential prediction for the overall sequence of different
proteins. These results are of a slightly smaller order
than the values obtained here (Table 2). The principal
difference of their approach to the one presented here
comes from the fact that the spectral correlation
processing is performed from raw spectral intensities,
whereas FIRE does not make use of the information
provided by the relative intensity values.

The efficiency of the FIRE results, obtained with re-
duced information, may seem paradoxical. To further
investigate this point, we applied the calculation of
Eq. (2) to the experimental pseudospectrum of p§, on
which the water signal was filtered and intensity values
smaller than 5S¢ were canceled.

The match matrix obtained in a such way (Fig. 4a)
displays many more false positive and negative correla-
tions than the matrix M calculated by FIRE (Fig. 2a).
Also, the percentages of correct sequential, medium-
range and long-range prediction were 44, 16, and 0%,
respectively. Two pairs of columns Glu-59/Ser-22 and
Met-24/Glu-25 extracted from S are typical examples of
a false positive (Fig. 4b, ¢) and a false negative (Fig. 4d,
e) correlation. The false positive correlation (Glu-59/Ser-
22) is due to large intensity values of autocorrelation
peaks and to large aliphatic peaks of Ser-22. The false
negative correlation (Met-24/Glu-25) is produced by the
weak intensities of peaks other than the autocorrelation
peaks.

Bartels and Wiithrich [6] proposed solving the bi-
ases induced by very large peaks by scaling down the

Fig. 4. a The match matrix obtained directly from the experi-
mental spectrum of p8. The processing was performed as
described in Sect. 3. The x- and y-axes show the residue numbers.
Two column pairs extracted from the matrix and corresponding to
a false positive correlation between Ser-22 (b) and Glu-59 (¢) or
to a false negative one between Met-24 (d) and Glu-25 (e) are
shown. The match values of the columns (b, ¢) and (d, e) are
indicated by the signs x and + signs, respectively in the match
matrix (a)

intensities of the autocorrelation peak and of the in-
traresidual HN-Ha peaks. However, it may be prob-
lematic to identify the intraresidual HN-Ho peaks in
certain cases (proximity of the water signal, absence
of TOCSY information, etc.) Moreover, different
scaling factors should be applied according to the
variations of internal mobility among the protein
residues. The protocol FIRE is thus more general and
more likely to be easily run automatically.



5 Conclusion

We proposed here a processing method which permits
protein fold information to be extracted automatically
from a 3D NOESY-HSQC experiment. This method
was tested on experimental and simulated data sets and
provides on average, more than 70% of the protein
sequential assignment. The sequential assignment is
better predicted for o than for f§ secondary structures.
The approach presented here does not explicitly address
the assignment problem, but could be used as a starting
point for such an analysis.

All the protein sizes used to test the FIRE approach
are smaller than 117 residues. However, the majority of
ISN single-labeled structures in the PDB are smaller than
120 residues and FIRE tends to speed up assignment
projects for single-labeled proteins; it is thus sufficient to
prove the efficiency of FIRE for this size range. The use
of FIRE on a 3D "N NOESY-HSQC for a protein
larger than 117 residues should come up against a larger
number of false positives.

The selection of the match values corresponding to
residues probably close in space was performed using the a
priori knowledge of the mean number of neighbors. To the
authors’ knowledge, the a priori knowledge of chemical
shift databases [19-21] of sequence databases [22], or of
global geometrical properties [23] has already been used
but local geometrical parameters had not been used so far.

Finally, the reliability of the prediction of proximity
between two residues can be estimated from their match
value. This estimation should be essential in the frame of
a complete assignment project.
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